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The precision and accuracy of interferometers using quadrature fringe detection are often limited not by the
interferometer itself but by the detector system. There are three typical errors: unequal gain in the two
channels; quadrature phase shift error; and zero offsets. This paper describes a simple method for deter-
mining the quadrature errors from experimental data obtained in the interferometer and correcting for
them. A numerical example demonstrating the significant improvement in the precision of interferometer
data is given.

1. Introduction

All interferometers with quadrature detector systems
have a set of errors in common, which in many cases
severely limit the attainable precision and accuracy.
These errors are (a) lack of quadrature (phase shift
between reference signals is not exactly X/4 or 900), (b)
unequal gain in the detector channels, and (c) zero off-
set. This paper describes a simple method of assessing
these errors from experimental data and correcting for
them. An ultrasonic fringe counting interferometer
is used as an example. The treatment is, however, quite
general and is applicable to any interferometer with
sinusoidal quadrature outputs.

HI. Ultrasonic Interferometer

To illustrate the operation of idealized quadrature
detector systems assume a wave train of carrier fre-
quency f traversing a path length L in a medium with
the propagation velocity c. If u = coswt is the trans-
mitted signal, the received signal is ur = R cos(wt - AL)'
where = 2-rf, = 2-r/X = wic is the wave number, X
is the wavelength, t is elapsed time, and R is an ampli-
tude. The received signal is demodulated in a quad-
rature detector with the reference signals

r, = 2 coswt r2 = 2 cos(wt + 7r/2).

The output signals from the detector are

ul = R[cosL + cos(2wt - i3L)],

U2 = R[sin3L + sin(2wt - OL)J.

The second terms in Eqs. (2) are high frequency signals
which can be suppressed with low-pass filters. The first
terms are sinusoidal functions of path length L:

ul = R cosL u2 = R sinL. (3)

(ubu 2 ) describes a vector from the origin which rotates
clockwise or counter clockwise depending on the sense
of change of L. The end point of this vector is always
on a circle of radius R.

Conventional techniques can be used to count the
number of quarter wavelengths, fringes, traversed as L
changes by sensing zero crossings of u1 and u2 . Mea-
surements of the instantaneous values of ul and 2
permit interpolation between the counts by determining
fractional fringes F which can be obtained from arc-
tanu2 /ul. Problems caused by the multivalued nature
of the arctan function can be avoided by using the ex-
pression

F = /2 |1 -_ 2 + 2 1 arcsinu2 . (4)

The change in path length AL in the interferometer
can then be calculated from

(1)

The author is with U.S. National Bureau of Standards, Washington,
D.C. 20234.

Received 16 May 1981.

AL = [ + F)1 - ( + F)ol X X (5)

where n is the integral fringe count, and subscripts 0 and
1 indicate measurements made before and after L was
changed. The precision in determination of AL de-
pends directly on the precision of measurement of n and
F. With an ideal quadrature detector system the pre-
cison is often limited only by system noise. With real
quadrature detectors, however, the end point of the
vector ( 1 ,U2 ) is rarely on a circle but on a distorted el-
lipse, and substantial errors arise in the fractional fringe
F.
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Fig. 1. Plots of uncorrected () and corrected () experimental data sets.

Ill. Quadrature Detector Errors

The distortion of the locus of the data points (u bu 2 )
from a circle into an ellipselike shape arises from three
different effects which can be expressed as three coor-
dinate transformations. The distorted ellipse (uld U2d)
is described by

d
U1 U + P,

d = 1
d= (2 Cosa - u1 sina) + q, (6)

where r is the channel gain ratio, p and q are the offset
in the cosine and sine channels, and a is the reference
signal quadrature error.

The original circle is now distorted into

(U + p)2 + (- U2 Cosai- U sina + q) R2, (7)

where (u1,U2 ) are the signals that would be obtained
from an ideal quadrature detector. Counts are no
longer accumulated at sin3L = 0 or at cosflL = 0 but
at

cosL + R=O ° AL= arccos (- )

+ m + rt v1 m = 011 . . s (8)

qr qr
sin(OL +a) +-R=O, iLl = aresin ~ W

-a +nr, n = 0,1,.... (9)

The errors Ej in the determination of L at the quadrant
boundaries, where counts are accumulated are

El = I arccos (-f)--J (10)

2 = -[arcsin (-2) - a]. (11)

To illustrate the magnitude of these errors, we cal-
culated the errors ci relative to the wavelength X for the
following set of typical quadrature detector errors: a
=-50; p = q = 0.05; r = 1.1; R = 1, and obtained

E; J0.004 near /3L =7r/2,

X 10.036 near /BL = 0.

Compared with the precision of good interferometers
these are large errors. Similar errors are caused in the
fractional fringes.

IV. Experimental Determination of Errors

If one assumes that p, q, r, and a are the only signif-
icant demodulation errors, a set of (uldu 2 d) data taken
over a sufficiently wide range of AL contains all the in-
formation needed to determine the four error terms.
This can be achieved by fitting, in the least squares
sense, Eq. (12), the equation of the distorted ellipse:

(ud )2 [(U2q)r + (u,-p) sina]2 H2LU I- p) + 1 cosa R
in the following form:

Atd +Bud + Cud+d ud +Eud = 1,

with

A = (R2 cos2 a - p
2 - r

2
q

2
- 2rpq sina)- 1,

B = Ar2 ,
C = 2Ar sina,
D = -2A(p + rq sina),
E = -2Ar(rq + p sin),

(12)

(13)

to the experimental data. Coefficients A through E and
their standard deviations are obtained from this fitting
operation. From the results, the quadrature errors and
their random uncertainties ai are calculated:

a = arcsinC(4AB)- 1/2

and, as an example,

(14)
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Table 1. Quadrature Detector Correction Terms Obtained from Data
Plotted in Fig. 1

A 0.932 63A 0.002 [Volt-2 ]
B 0.686 6B 0.002 [Volt- 2]
C 0.311 Ac 0.004 [Volt- 2 ]
D -0.070 bD 0.002 [Volt- 1

]
E 0.001 6E 0.002 [Volt-1 ]

a 9.48 da 0.11 [degrees]
r 0.830 dr 0.002
P 0.037 dp 0.001 [Volt]
q 0.01 dq 0.01 [Volt]

ba [ ( 2A) 2+ ( B) C+ ( C I

rB ~ 1/2 

2BD - EC
P C2

- 4AB

2AE-DC
q = C2-4AB

V. Correction of Data
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(15)

(16)

(17)

Knowing the quadrature errors experimental data
(u 1dzU2 d) taken with the interferometer can now be
corrected using the inversion of Eq. (9):

U1 = U1 ;

U2 = I[(d - p) sina + r( - q)].
cosa

(18)

Figure 1 shows plots of experimental data from an ul-
trasonic interferometer before and after correction.
The correction terms and their random uncertainties
are given in Table I. After appropriate corrections are
applied the typical noise-limited resolution of such in-
terferometers is reduced to 10-8 m compared with 2 X
10-6 m for the uncorrected data for a carrier frequency
of 10 MHz and a wavelength of 1.5 X 10-4 m.

Instead of varying the length of the path L to generate
a data set for the extraction of the correction terms, ei-
ther the carrier frequency f or the propagation velocity
c could be varied. Care must be taken that new errors
are not introduced, for example, due to limited receiver
bandwidth or dispersion in the medium.

VI. Conclusions

Phase shift errors, zero offset, and gain differences.
may be found in most quadrature detectors. They may
seriously affect the performance of the interferometers
with which they are associated by increasing demodu-
lation errors. The quadrature detector errors can easily
be determined from experimental data, and suitable
corrections can be made. This improves the resolution
of many interferometers substantially.

The author would like to acknowledge several helpful
discussions with Charles R. Tilford, Center for Absolute
Physical Quantities, and Christoph Witzgall, Center for
Applied Mathematics, who assisted in the formulation
of the least squares fitting problem.
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